Exercise 13

For the following exercises, points P(-1,-1) and Q(x,y) are on the graph of the function $f(x) = \frac{1}{x}$.

Complete the following table with the appropriate values: y-coordinate of Q, the point Q(x, y), and the slope of the secant line passing through points P and Q. Round your answer to eight significant digits.

x	у	$Q\left(x,y\right)$	m _{sec}
-1.05	a.	е.	i.
-1.01	b.	f.	j.
-1.005	c.	g.	k.
-1.001	d.	h.	I.

Solution

If x = -1.05, then $y = \frac{1}{-1.05} \approx -0.95238095$, which means Q(-1.05, -0.95238095) and

$$m_{\rm sec} \approx \frac{-0.95238095 - (-1)}{-1.05 - (-1)} \approx -0.95238095.$$

If x = -1.01, then $y = \frac{1}{-1.01} \approx -0.99009901$, which means Q(-1.01, -0.99009901) and

$$m_{\rm sec} \approx \frac{-0.99009901 - (-1)}{-1.01 - (-1)} \approx -0.99009901.$$

If x = -1.005, then $y = \frac{1}{-1.005} \approx -0.99502488$, which means Q(-1.005, -0.99502488) and

$$m_{\rm sec} \approx \frac{-0.99502488 - (-1)}{-1.005 - (-1)} \approx -0.99502488.$$

If x = -1.001, then $y = \frac{1}{-1.001} = -0.99900100$, which means Q(-1.001, -0.99900100) and

$$m_{\text{sec}} \approx \frac{-0.99900100 - (-1)}{-1.001 - (-1)} \approx -0.99900100.$$

For $f(x) = \frac{1}{x}$, the slope of the secant line passing through P and Q gets closer and closer to -1 as x gets closer and closer to -1.